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The analysis of diffusion NMR data in terms of distributions of diffusion coefficients is hampered by the
ill-posed nature of the required inverse Laplace transformation. Naïve approaches such as multiexponen-
tial fitting or standard least-squares algorithms are numerically unstable and often fail. This paper
updates the CONTIN approach of the application of Tikhonov regularization to stabilise this numerical
inversion problem and demonstrates two methods for automatically choosing the optimal value of the
regularization parameter. These approaches are computationally efficient and easy to implement using
standard matrix algebra techniques. Example analyses are presenting using both synthetic data and
experimental results of diffusion NMR studies on the azo-dye sunset yellow and some polymer molecular
weight reference standards.
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1. Introduction

The influence of bulk sample motion on the observed echo
attenuation in pulsed-gradient spin echo (PGSE) and stimulated
echo (PGStE) experiments has been known since the early days
of NMR spectroscopy [1,2]. In principle, analysis of this attenuation
behaviour as a function of the applied gradient strength gives one
access to diffusion coefficients and bulk flow parameters [3].
Unfortunately the nature of the mathematical problem underlying
the analysis of PGSE data renders this a non-trivial task in all but
the simplest of cases [4,5]. In general, the echo attenuation follow-
ing the application of a gradient spin-echo or stimulated echo for a
diffusing spin of diffusion coefficient D is described by the Stejskal–
Tanner equation [1–5]:

sðgÞ
sð0Þ ¼ expð�q2D0DÞ ð1Þ

where q = cgd and D0 = D � d/3 to correct for the finite duration of
the gradient pulses, c is the magnetogyric ratio of the diffusing spin,
g is the amplitude of the gradient pulse with duration d, and D is the
diffusion labelling time. Depending on the precise details of the
pulse sequence, minor modifications are required to the D0 param-
eter [3,5]. The effects of coherent sample motion such as flow,
which are typically observed as phase shifts, will not be considered
here. In the case of a single diffusing species, or multiple, non-over-
lapping species, the diffusion coefficient can be obtained by the
ll rights reserved.
straight-forward least-squares fitting of Eq. (1) to the experimental
data. This technique has been used for a variety of applications such
as determining the oligomeric state of organometallic complexes
[6] and the analysis of complex mixtures [7]. The situation becomes
more challenging when multiple diffusing species are present in
solution giving rise to the overlap of spectral resonances. In this
case, the multi-exponential fitting of Eq. (1) can be fraught with dif-
ficulty [4,5,8] depending on the number of diffusing species and the
differences in their diffusion coefficients. A number of numerical
approaches have been demonstrated to attempt to solve this over-
lap problem both in the case when the number of diffusing species
is known and when it is not. Typical methods are those such as
DECRA [9,10], (S)CORE [11–13], maximum entropy methods [14]
or other, more exotic methods [15,16].

In the limit of a large number of diffusing species, the system is
more correctly described by a distribution of diffusion coefficients
h(D). In the case, Eq. (1) is modified by integrating over this
distribution:

sðgÞ ¼
Z

expð�q2D0DÞhðDÞdD ð2Þ

This equation can be re-cast in matrix form as:

s ¼ Ah ð3Þ

where the matrix A, termed the Stejskal–Tanner matrix, can be
though of as mapping the distribution of diffusion coefficients h
onto the observed echo attenuation s. The elements of A are then
defined as follows:

Amn ¼ expð�c2d2g2
nDmðD� d=3ÞÞ ð4Þ
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Fig. 1. (a) Gaussian distribution of diffusion coefficients, centred at
5.0 � 10�10 m2 s�1, with width 5.0 � 10�11 m2 s�1 on a logarithmically-spaced grid
of 201 diffusion points. (b) Echo attenuation profile for a proton spin during a
pulsed-gradient stimulated echo sequence, calculated using Eq. (3) assuming 64
gradient points equally spaced between 0.05 and 0.7 T m�1. The gradient duration
was 2 ms and the diffusion labelling period was 100 ms. Random Gaussian noise of
zero mean, and standard deviation 5.0 � 10�3 has been added. (c) Attempted
recovery of the input distribution using a standard least-squares approach. Note the
difference in y-scale between (a) and (c).
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As diffusion coefficients typically span several orders of magni-
tude, it is advantageous to consider a logarithmically spaced grid in
the diffusion dimension, i.e. log(D). As Chen et al. have noted [17], a
result of this transformation is that peaks in h(D) at small values of
D will appear larger than peaks with similar area at larger D. In or-
der to correct for this the product D h(D) is typically plotted versus
log(D) [17].

Eq. (2) has the form of a Laplace transform, which occurs fre-
quently in the analysis of magnetic resonance data, for instance
in the field of relaxometry [18,19]. In order to recover the distribu-
tion of diffusion coefficients, the inverse Laplace transform is re-
quired, which is famously difficult to solve numerically, as it is
an ill-posed problem [20]. Naively, one would attempt to solve
Eq. (3) by either forming the (pseudo) inverse of A or by using a
traditional least-squares approach:

hLS ¼ Aþs or argmin
h

kAh� sk2
2 ð5Þ

where A+ is the pseudo-inverse of A (Moore–Penrose pseudo-in-
verse). Fig. 1 shows this naïve approach, using Eqs. (3) and (4) to
construct the echo attenuation (Fig. 1b) from the Gaussian distribu-
tion of diffusion coefficients shown in Fig. 1a. The least-squares at-
tempt to recover this distribution clearly fails, resulting in wild
oscillations of the returned distribution, characteristic of an ill-
posed problem (Fig. 1c).

On purely physical grounds, the constraint that the distribution
of diffusion coefficients should be non-negative, i.e. h P 0, is well
justified. Using the non-negative least-squares algorithm (NNLS)
[21] it is straight forward to solve Eq. (3). Unfortunately, the solu-
tions produced are not realistic, as has been noted in the investiga-
tion of T2 relaxation profiles, since the NNLS algorithm tends to
produce sharply peaked results, with only a few non-zero data
points [22]. While these spikes are often close in position to the
maxima in the true distribution, the NNLS algorithm is unable to
reproduce reliably the shape of the distribution. Despite this, how-
ever, these spikes have been put to use in the Monte Carlo style
analysis of T2 relaxation data [22]. Similar sharply spiked results
were observed on application of the NNLS algorithm to the inver-
sion of Eq. (3) (results not shown).

There have been a number of approaches described to attempt
to extract meaningful distributions of diffusion coefficients from
PGSE data, and similarly for the analysis of relaxation time distri-
butions, including regularization [17,23], maximum entropy [14]
and Bayesian methods [24]. Of these, the use of the CONTIN pack-
age [25] has been particularly successful [17,23]. This approach
uses Tikhonov regularization to stabilise the solution to Eq. (3)
by imposing a penalty on the recovered solution. The nature of this
penalty can be chosen by the user. The regularized solution is ob-
tained by the following minimisation:

argmin
h

kAh� sk2
2 þ k2kLhk2

2 ð6Þ

The formal solution to which can be written as:

hk ¼ ðAT Aþ k2LT LÞ�1AT s ð7Þ

The second term in Eq. (6) serves to impose some constraint or
prior knowledge on the size of the returned distribution, with the
power of this term controlled by the regularization parameter k.
The appropriate choice of this parameter is therefore very impor-
tant. The CONTIN package makes the choice of the regularization
parameter k based on statistical arguments and using the principle
of parsimony, i.e. choose the simplest solution consistent with the
data, which may depend on additional input from the user [25].
The matrix L allows a priori expectations about the data to be in-
cluded such as requiring the solution to be smooth. Other con-
straints, based typically on physical insights, such as non-
negativity using the (F)NNLS algorithm [21,26], can also be readily
included. In the magnetic resonance field, Tikhonov regularization
has also been used very successfully in the analysis of DECODER
solid-state NMR data [27], in the extraction of distance distribu-
tions from pulsed EPR data [28] and the recovery of radical-pair
re-encounter probability distributions in magnetic field effect
experiments [29].

1.1. Analysis of the Stejskal–Tanner matrix

One of the major tools in the analysis of ill-posed problems is
the Singular Value Decomposition (SVD) [30]. This permits an arbi-
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trary matrix A to be decomposed into three matrices, U, R and V
such that:

A ¼ URVT ð8Þ

The matrix U is said to contain the left singular vectors as its
rows, which form an orthonormal basis for A. Similarly, VT contains
the right singular vectors as its columns which also form an ortho-
normal basis for A. The matrix R is diagonal, containing the so-
called singular values stored in decreasing order, i.e.
r1 > r2 > r3 > � � � > rn. Using the definition of the SVD in Eq. (8) it
is possible to recast the solution of Eq. (3) in terms of the singular
values ri and vectors ui and vi:

hLS ¼ Aþs ¼
XrankðAÞ

i¼1

uT
i s
ri

v i ð9Þ

Through the use of the SVD it is possible to identify an ill-posed
problem and to determine to what extent regularization ap-
proaches may succeed [30]. Fig. 2 shows a plot of the singular val-
ues (filled circles) for a typical Stejskal–Tanner matrix comprising
201 diffusion points and 64 gradient points, that used in calculat-
ing the data shown in Fig. 1. As can clearly be seen the 64 singular
values rapidly decay and settle at a value proportional to the ma-
chine epsilon, or floating point precision of the software used to
perform the calculations. It is these extremely small singular val-
ues, via the denominator in Eq. (9), which result in the wild oscil-
lations observed in the least-squares solution (Fig. 1c) and the
ensuing failure to recover the input distribution of diffusion coeffi-
cients. It is worth noting that these difficulties in the inversion of
ill-posed problems are a general feature of the matrix A, and are
present even in the absence of noise. Regularization methods work
by filtering out the influence of the small singular values and hence
stabilising the solution of the inverse problem [30]. In the case of
Tikhonov regularization when the operator L = I, the regularized
solution of Eq. (6) can be constructed from the SVD as shown:

hk ¼
Xn

i¼1

fi
uT

i s
ri

v i ð10Þ

where the filter factors fi are defined as:

fi ¼
r2

i

r2
i þ k2 ð11Þ

Note, that when L – I, the singular values are replaced by the
generalized singular values of the matrix pair (A, L) [30,31]. Clearly
then, the effect of the regularization parameter k is to reduce the
Fig. 2. Singular values ri, coefficients juT
i sj, and their ratio, calculated for the

Stejskal–Tanner matrix used in Fig. 1.
influence of the small singular values of A in a controlled manner
as opposed to using a sharp cut off in the case of truncated SVD
reconstructions such as those used in for example the analysis of
relaxation data [32].

The ability of a regularization method to return useful (mean-
ingful) results can be investigated by examining the rates at which
the singular values ri and the coefficients juT

i sj decay to small val-
ues. Considering Eq. (9), we should require that the coefficients de-
cay more rapidly than the singular values in order that a
meaningful regularized solution can be found. This can be formal-
ized in terms of the discrete Picard condition [30], and is inspected
visually for the Stejskal–Tanner matrix in Fig. 2. The singular val-
ues are represented by filled circles, while the open squares show
the coefficients juT

i sj. As is clear, the discrete Picard condition is
satisfied for the first 10 or so singular values until the coefficients
become dominated by the noise in the measured data s. Therefore
a good regularization method will favour retaining just these com-
ponents. As the role of the regularization and hence the regulariza-
tion parameter, is to filter out the small singular values, the
problem reduces to one of how to choose an appropriate value
for the regularization parameter. Another common feature of ill-
posed problems is that increasing the size of the matrix A, in either
dimension, does not in general improve the ability to obtain a sta-
ble solution.
1.2. Choice of regularization parameter

One of the key challenges in using any regularization method is
the selection of the regularization parameter k. When the parame-
ter is small, the solution is under regularized and the residual norm
||Ahk � s||2 dominates the solution, which in the limit of k = 0 re-
sults in the classical least squares solution with the associated wild
oscillations. Similarly large values of k result in the solution norm
||Lhk||2 dominating: the solution is over penalised, i.e. over-
smoothed, and information is lost. A number of methods have been
proposed to determine the optimal value of k, with varying degrees
of computational complexity and stability [30]. The CONTIN pack-
age, commonly used for the analysis of diffusion NMR data, uses
statistical arguments and guidance from the user to find the sim-
plest solution compatible with the observed data. Two of the most
common automatic parameter choice methods, which do not re-
quire any intervention from the user, are the L-curve approach
[33] and Generalized Cross Validation (GCV).

The L-curve method is, perhaps, conceptually the simplest
method of choosing the regularization parameter. It is a parametric
plot of the residual norm ||Ahk � s||2 against the solution norm
||Lhk||2, plotted in log–log space parametrically as a function of reg-
ularization parameter: (q(k), g(k)) = (log ||Ahk � s||2, log ||Lhk||2).
The characteristic ‘‘L’’ shape of the curve gives this method its
name. It can be shown that the L-curve is a monotonic function
of k and that it is impossible to construct any solution h which falls
below the curve [33]. The optimal value of the regularization
parameter is located close to the corner of the curve, being a bal-
ance between the smooth, over-regularization of the solution
(large values of k) and perturbation errors caused by very small
singular values (small values of k). The corner of the L-curve is lo-
cated at the point which has maximum curvature. The curvature j
is defined as:

jðkÞ ¼ q0g00 � q00g0

ððq0Þ2 þ ðg0Þ2Þ3=2 ð12Þ

With the primes denoting the derivative with respect to k. A
typical L-curve for Tikhonov regularization as applied to the solu-
tion of Eq. (3) via Eq. (6) is shown in Fig. 3a.
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An alternative method for choosing the regularization parame-
ter is that of Generalized Cross Validation (GCV). The principle be-
hind this method is that a ‘‘good’’ regularized solution given by an
appropriate value of the regularization parameter k should be able
to predict missing data [30], i.e. if a point were dropped from the
vector h, then a good value of k should be able to reconstruct this
missing data point. The GCV function is defined as:

GðkÞ ¼ kAhk � sk2
2

TrðIm � AA#Þ2
ð13Þ

where Im is the m �m identity and A# is the regularized inverse of
A, defined such that hk = A#s. The numerator describes the quality
of the solution’s fit to the data being the residual norm and the
denominator gives the number of effective degrees of freedom
Fig. 3. (a) L-curve analysis giving the optimal regularization parameter kc = 0.1677
and (b) Generalized Cross Validation analysis yielding an optimal regularization
parameter of kmin = 0.1144 for the synthetic problem shown in Fig. 1. The dotted
lines indicate the optimal value of k. (c) shows the first 15 filter factors, on a semi-
logarithmic scale, appropriate for the regularization parameters determined via the
L-curve and GCV methods.
[30]. The optimal value of the regularization parameter kmin is found
when this function is a close to a minimum. A typical example of
the GCV function for diffusion NMR data, with the minimum high-
lighted, is shown in Fig. 3b. One issue with the use of the GCV func-
tion as a parameter choice method is that it is typically very flat for
small values of the regularization parameter, as shown by the left-
hand side of Fig. 3b. This may cause the numerical routines used to
locate the minimum to select values of k smaller than the optimum,
and hence this approach can often give rise to under-regularized
solutions.

Using the optimal regularization parameters obtained by these
two methods allows the filter factors, calculated using Eq. (11) to
be inspected, as shown in Fig. 3c. The filter factors decrease loga-
rithmically with increasing index beyond about the 7th singular
value. From this it is clear that only the first few singular values
of the Stejskal–Tanner matrix will contribute significantly to the
recovered solution, with the smaller singular values, responsible
for the wild oscillations, effectively removed from the recovered
solutions.

In this work, we seek to update the CONTIN approach of applying
Tikhonov regularization to the solution of Eq. (3), using the imple-
mentation in Hansen’s Regularization Tools [34]. The automatic
choice of the regularization parameter k, using both the L-curve
and Generalized Cross Validation (GCV) methods is investigated,
along with the influence of the operator L for simple synthetic distri-
butions of diffusion coefficient. Application to the analysis of PGStE
data for two chemical systems is then demonstrated.

2. Methods

2.1. Numerical calculations and data analysis

All numerical calculations were performed using the open
source SciPy modules of the Python programming language [35].
Tikhonov regularization and the associated analyses were per-
formed using routines based on Hansen’s Matlab package Regular-
ization Tools (version 4.1) [34,36], following translation into
Python/SciPy code.
2.2. NMR spectroscopy

All NMR data were collected on a Varian VNMRS 600 spectrom-
eter (Oxfordshire, UK), operating at a 1H frequency of 599.7 MHz,
using an X{1H} broadband probe equipped with an actively-
shielded z-gradient capable of up to 0.7 T m�1. The sample temper-
ature was regulated at 298 K. Pulsed-gradient stimulated echo dif-
fusion data were recorded using the Oneshot sequence [37] with
64 linearly spaced gradient points spanning 0.04–0.56 T m�1. The
gradient durations were 3 ms, with the diffusion labelling period
being 200 ms. The data were processed with NMRPipe [38] using
0.5 Hz exponential line broadening prior to Fourier transformation,
and integrating over the aromatic region.
2.3. Materials

Sunset yellow FCF was obtained from Sigma Aldrich (Dorset,
UK) and purified by ethanol precipitation prior to use [39,40]. Sam-
ples were prepared at concentrations of 1.64 mM, 0.10 M, 0.30 M,
0.49 M, 0.74 M and 0.90 M in D2O as used in the previous study
[41]. Poly(styrene 4-sulphonate) polymer reference standards of
known molecular weight and polydispersity typically less than
1.20, were purchased from Kromatek (Essex, UK) and used as ob-
tained. All polymer samples were prepared as 1 mM solutions in
D2O. Deuterium oxide was supplied by Goss Scientific (Cheshire,
UK).
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3. Results and discussion

3.1. Application to synthetic data

As an initial demonstration of the application of Tikhonov reg-
ularization to the inversion of Eq. (3), model echo attenuation pro-
files were constructed from two diffusion coefficient profiles, h(D):
one, a unimodal Gaussian distribution centred at 5.0 � 10�10

m2 s�1 and width 5.0 � 10�11 m2 s�1 and the second, consisting
of a pair of non-overlapping Gaussians, centred at 2.0 � 10�9 and
3.0 � 10�10 m2 s�1, with widths 1.3 � 10�10 and 0.3 � 10�10 m2 s�1

respectively, using Eq. (3). Gaussian white noise, of standard devi-
ation 5.0 � 10�3, was added to the resulting echo attenuations to
yield a signal-to-noise ratio of �200. This is comparible to that
obtainable experimentally. Fig. 4 shows the results of the applica-
tion of Eq. (6) to the inversion of Eq. (3), using two choices for the
operator L, either the identity, I or a discrete finite difference
approximation of the second derivative operator D2. The added
constraint that the solution should be non-negative (h P 0) was
included in all cases via use of the NNLS algorithm [21] to solve
Eq. (6). The appropriate model input distribution is shown for com-
parison. Inclusion of the non-negativity constraint was found to be
vital in stopping the return of broad, featureless, slowly varying
solutions (data not shown). The simplest initial test case is the uni-
modal distribution, with the results shown in Fig. 4a for parameter
choice by the L-curve method and Fig. 4b for the GCV approach.
Clearly similar results are obtained by the two methods, as indi-
cated by the similar optimal regularization parameters returned:
kc = 0.1677, and kmin = 0.1144, suggesting that, in this simulation
at least, the determination of the location of the GCV minimum
Fig. 4. Recovered diffusion coefficient distributions for unimodal and bimodal synthetic m
unimodel, L-curve method; (b) unimodel, GCV method; (c) bimodal, L-curve method; an
is not strongly affected by the broadly flat GCV function observed
for small values of k. In terms of the effect of the operator L, the
use of the identity matrix I yields a distribution of diffusion coeffi-
cients which has abrupt, discontinuous, changes near to the base-
line as a consequence of the non-negativity constraint. Similar
effects have been observed in the Tikhonov regularization to re-
cover radical pair re-encounter probabilities from magnetic field
effect data [29]. The L = I recovered distribution is also slightly
broader than the model it is trying to restore, more so with the
use of L-curve (Fig. 4a) than the GCV method (Fig. 4b). The operator
L allows additional information to be incorporated into the analy-
sis, such as requiring any reasonable distribution of diffusion coef-
ficients to be smooth. This can be incorporated by setting L = D2,
with the results being shown as the dashed lines in Fig. 4. This
requirement that the distribution should be smooth results in a
recovered distribution which more closely agrees with the model
input distribution. The slight mismatch in intensity is the result
of an artefact peak at 1.0 � 10�8 m2 s�1 which is not present in
the model distribution. This artefact peak is probably due to
numerical inaccuracies arising at the ends of the approximate D2

operator.
In the case of a bimodal model distribution, again, the L-curve

(kc = 0.1235) and GCV (kmin = 0.0875) methods appear to perform
similarly, as shown in Fig. 4c and d respectively. As observed for
the unimodal case, the use of the identity, L = I, does not recover
accurately the shape or centre positions of the two components
of the input distribution. There is a noticeable shift to larger diffu-
sion coefficients in the location of the more rapidly diffusing com-
ponent at 2.0 � 10�9 m2 s�1. This shift is an artefact of using the
NNLS algorithm, as has been noted previously by Prange and Song
odels, showing the influence of the matrix L and the parameter choice method: (a)
d (d) bimodal, GCV method.



Fig. 5. (a) Distributions of diffusion coefficients recovered from the Tikhonov
regularization of diffusion NMR data for six samples of the azo dye sunset yellow at
six concentrations of 1.64 mM, 0.10 M, 0.30 M, 0.49 M, 0.74 M and 0.90 M in
deuterium oxide, similar to those used in a previous study [41], (b) shows the first
15 (out of 64) filter factors derived from the optimal kc values for each sunset yellow
concentration.
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[22] in the analysis of T2 relaxation distributions. When using
L = D2 the component at 3.0 � 10�10 m2 s�1 is recovered well by
both methods, while the faster diffusing component is slightly re-
duced in intensity. The excellent recovery of the input distribution
by both methods suggests that the ‘‘ideal’’ value of the regulariza-
tion parameter is located somewhere between the values obtained
from the L-curve and the GCV method.

3.2. Aggregation of sunset yellow FCF

Sunset yellow FCF is a well studied azo-dye known at ambient
temperatures to form lyotropic liquid crystals at high concentra-
tions [39,40,42,43], and form aggregates of tens to hundreds of
molecules at lower concentrations [39,41,42]. Previous studies of
this compound have focused on the use of optical and X-ray scat-
tering techniques to probe the state of aggregation [39,42]. Re-
cently, we have employed diffusion NMR methods, under the
assumption that the aggregates are in a state of fast exchange, both
with each other, and with pools of monomer in solution [41]. This
assumption allowed the observed echo attenuation to be modelled
using a single exponential function yielding an observed diffusion
coefficient which is the population-weighted average of the diffu-
sion coefficients for all the species present in the solution [5]. Here
we apply Tikhonov regularization to invert Eq. (3) to directly ob-
tain the distribution of diffusion coefficients and hence informa-
tion on the distribution of aggregated species present in the NMR
tube.

Following the same approach to that used for the synthetic data
above, Tikhonov regularization was used employing L = D2 and the
non-negativity constraint as these yield the most accurate recon-
struction of the diffusion coefficient distribution. For the majority
of the sunset yellow samples the GCV approach fails, due to the
inability to locate a suitable minimum. The GCV function for the
samples at concentrations of 0.10 M and above, does not show a
global minimum, and hence this method cannot be used to locate
a suitable value of the regularization parameter. For the 1.64 mM
sample, a minimum was located at kmin = 1.736 � 10�4, which re-
sults in the recovered distribution having a very narrow, physically
unrealistic, shape. These problems are a known pitfall of using the
GCV as a parameter choice method [30].

Using the L-curve method to select the regularization parame-
ter was more successful. The results of this analysis for a series
of typical concentrations spanning those studied previously [41]
are shown in Fig. 5a. The recovered distributions are all reasonably
narrow and centred at similar values of the diffusion coefficient to
those determined using a mono-exponential fit to the echo atten-
uation profile, consistent with the formation of larger aggregates at
higher concentrations [41]. The narrowness of the recovered distri-
butions is in agreement with the fact that these aggregated assem-
blies of sunset yellow molecules are in the fast exchange regime,
with exchange occurring both between aggregates and free mono-
mers. This is in agreement with previous studies on this system
[41].

The Tikhonov filter factors for this system are plotted in Fig. 5b.
As for the example data in Fig. 3c, it is clear that only the first few
singular values significantly contribute to the recovered distribu-
tions, with the remaining filter factors decreasing rapidly as a func-
tion of index. Similar trends are observed for all six samples, with
only minor variations arising due to the different optimal regular-
ization parameter chosen for each sample.

3.3. Polymer size distributions

Another common application of PGSE diffusion NMR methods is
the determination of polymer molecular weight distributions
[17,44]. These parameters are important for understanding the
behaviour and reactivity of polymers in solution. In principle,
obtaining these data from NMR spectroscopy should be simpler
and require significantly less sample preparation and solvent than
more traditional approaches such as size-exclusion
chromatography.

Solutions of poly(styrene 4-sulphonate) molecular weight refer-
ence standards, at a concentration of 1 mM, were investigated
using the same approach as for the sunset yellow solutions and
the results are shown in Fig. 6a. Tikhonov regularization was per-
formed using L = D2 with the non-negativity constraint. The regu-
larization parameter was chosen using the L-curve method.
Reasonably narrow unimodal distributions of diffusion coefficients
are observed for all the samples, in line with the fact that the sam-
ples have low polydispersity, typically <1.20. The 14.9 kDa sample
does, however, show a significantly broader distribution that ob-
tained for the other samples. As observed for the test data and
some of sunset yellow distributions, artefacts are observed at the
high diffusion coefficient end of the recovered distribution. Evi-
dence that this is merely a numerical artefact was obtained by con-
structing the Stejskal–Tanner matrix to span a different range of
diffusion coefficients results in the artefact peak being consistently
observed at the high end of the scale, while the peaks correspond-
ing to the polymer reference standards remain at constant D (data
not shown). The filter factors, not shown, for the polymer reference
standard data show the same trends as for both the example data
(Fig. 3c) and the sunset yellow data (Fig. 5b), with only the first 7 or
so singular values contributing to the recovered distribution.

The diffusion NMR data can be further used to extract charac-
teristic parameters for the investigated polymer. The viscosity of



Fig. 6. (a) Polymer diffusion coefficient distributions obtained for 1 mM samples, in
D2O, of several poly(styrene 4-sulphonate) molecular weight reference standards
with polydispersities typically <1.20. The quoted molecular weights are the weight-
averaged molecular weights Mw. (b) Mark–Houwink analysis of the diffusion
coefficients at the peaks of the diffusion coefficient distributions. The solid line is
the linear regression on all five data points, while the dashed line is the same
excluding the largest reference standard (63.9 kDa).
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a polymer solution can be related to the molecular weight of the
polymer solute via the Mark–Houwink equation:

g ¼ KMa ð14Þ

where the coefficients K and a depend on the properties of both the
solvent and polymer [45]. The viscosity of a polymer solution can
also be related to the diffusion coefficient, i.e. the hydrodynamic
properties of the molecule, using the Stokes–Einstein equation
[4,5], therefore a log–log plot of diffusion coefficient versus molec-
ular weight should yield a straight line with gradient and intercept
given by the Mark–Houwink parameters a and K 0 ¼ kT=4prK
respectively [45]. This plot, using the peak centres of the returned
distributions, is shown in Fig. 6b, with the line of best fit yielding
a value of a = �1.11, shown as the solid line in Fig. 6b, which is typ-
ical for a polyelectrolyte such as poly(styrene 4-sulphonate) in a
solution of low ionic strength [46]. Since the polymer solutions
are in the semi-dilute to concentrated regime [47], the highest
molecular weight data point (concentrated regime) was dropped,
and the remaining data refitted, yielding a revised value of
a = 0.78 (dashed line in Fig. 6b) which is in excellent agreement
with literature values of a = 0.78–0.89 depending on solution ionic
strength [48].
4. Conclusions

The inversion (inverse Laplace transform) of NMR diffusion data
is known to be an ill-posed problem which requires numerical
stabilisation in order to yield meaningful results. In this paper
we update the CONTIN approach of using Tikhonov regularization
and demonstrate two methods for automatically choosing the va-
lue regularization parameter. Both parameter choice methods per-
form well for synthetic data, accurately recovering the model
distributions of diffusion coefficients. However, the GCV approach
is less stable in the case of real experimental data due to potential
robustness issues with the flat minimum of the GCV function. In
general, therefore, the L-curve method should be preferred. The
Tikhonov regularization solution and parameter choice via the L-
curve method are both straightforward to compute from the singu-
lar value decomposition of the Stejskal–Tanner matrix. Applica-
tions to real systems have been demonstrated for the aggregation
of the azo dye sunset yellow and for some polymer molecular
weight reference standards. In both cases, parameters are obtained
which describe realistically the underlying distributions of diffu-
sion coefficients.
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